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ABSTRACT

This paper describes a visual processing algorithm that
supporis autonomous driving. The algorithm requires that
lane markings be present and attempts to track the lane
markings on each of two lane boundaries in the lane of
travel. There are three stages of computation: extracting
edges, determining which edges correspond to lane mark-
ers, and updating geometric models of the lane markers.
All processing is confined to the 2-D image plane. No in-
formation about the motion of the vehicle is used. This al-
gorithm has been used as part of a complete system to drive
an autonomous vehicle, a High Mobility Multipurpose
Wheeled Vehicle (HMMWY). Autonomous driving has
been demonstrated on both local roads and highways at
speeds up to 80 ki h. The algorithm has performed well in
the presence of non-ideal road conditions including gaps in
the lane markers, sharp curves, shadows, cracks in the
pavement, wet roads, rain, dusk, and nighttime driving.
The algorithm runs at a sampling rate of 15 Hz and has a
worst case processing delay time of 150 milliseconds. Pro-
cessing is implemented under the NASA/NBS Standard Ref-
erence Model for Telerobotic Control System Architecture
(NASREM) architecture and runs on a dedicated image
processing engine and a VME-based’ microprocessor sys-
tem.

1. Introduction

There has been increasing interest in the development of
autonomous driving in recent years. Interest has included

1. Certain commercial equipment, instrumenis, or materials
are identified in this paper in order to adequately specify the
expetimental procedure. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply
that the materials or equipment identified are necessarily best
for the purpose.

high-speed driving on highways, urban driving, and navi-
gation through less structured off-road environments. The
primary challenge in autonomous driving is the develop-
ment of perception techniques that are reliable under the
extreme variability of outdoor conditions in any of these
environments. Roads vary in appearance: some are smooth
and well marked while others have cracks and potholes or
are not marked at all. Shadows, glare, varying illumination,
dirt or foreign matter, other vehicles, rain, and snow also
affect road appearance.

Section 2 reviews previous work in vision-based auton-
omous driving. Section 3 describes this lane marker track-
ing algorithm. Section 4 presents the hardware and devel-
opment environment used to implement the algorithm., Sec-
tion 5 describes the algorithm performance.

2. Review of road perception techniques

Perception for autonomous driving has been approached
with a wide variety of vision-based techniques. Most of
these approaches fall into one of two categories: region-
based statistical classification methods and feature tracking
methods. Several other methods have been proposed, most
notably neural networks.

2.1. Region-based statistical classification methods

Region-based statistical classification methods [1], [2],
{31, [4], [5], [6], [7], [8] have been applied to the road per-
ception problem. These methods share a similar paradigm
in that they classify each pixel in the image as either road
or non-road. This is done using classical techniques of su-
pervised or unsupervised statistical classification [34). The
road boundaries are then determined by various methods.

In all these methods, pixels are classified on the basis of
color. In addition [1] uses a measure of local texture and [8]
uses the image coordinates of the pixel. The color at each



pixel is measured in terms of three scalar components: red,
green, and blue (RGB). SCARF [1], [2], [3], UNSCARF
[3), [8], and FMC [5], [6] direcily use the three RGB color
components for classification. VITS [4] uses red and blue
only, Lin and Chen [7] base classification on the values of
hue, saturation, and intensity (HSI). The HSI representa-
tion is computed by a non-linear transformation from the
measured RGB values. Lin and Chen claim that the HSI
representation is better suited for road segmentation.
Classification involves assigning each pixel to one of a
number of predefined classes. VITS, FMC, and Lin and
Chen classify all pixels as one of two classes: road and non-
road. SCARF and UNSCARF, however, represent both
road and the non-road by multiple classes. The rationale for
having multiple classes is to better represent the variation
in outdoor scenes. For example, the differences in color
among portions of the road that are wet, shaded, sunny, and
patched are significant and are therefore probably better ac-
commodated by separate classes rather than a singleclass.

2.1.1. Supervised classification

Most of the approaches described in [11, [2], [3], [41, [5],
{6], [7] use a form of supervised classification. In super-
vised classification, the statistics of each class are known
prior to classification. Each pixel is then assigned o the
class which it most closely matches in the statistical sense.
SCAREF represents each class by its second order statistics
(mean and covariance), VITS, FMC, and Lin and Chen di-
vide feature space by a planar boundary between the road
class and the non-road class and thereby implicitly assume
that the two classes have equal covariance.

It has been reported (11, [2], [3), {41, [5), [6], [7] that
fixed class statistics are not consistently reliable for road
recognition. For example, the statistics that accurately seg-
ment a portion of the road exposed to the sun may not yield
a reliable segmentation of a shaded portion of the road. To
address this problem, these methods continually recompute
class statistics during operation. After each image is classi-
fied, the classified pixels are then used to compute the class
statistics that will be used for classifying the next image.

The initial class statistics can be established in various
ways. The FMC classifier is initialized automatically. The
first image is segmented into regions. The pixels in each re-
gion are then used to compute the initial class statistics.
Other methods require a human operator to label regions in
the initial image by hand.

When all pixels have been classified, various techniques
can be used to find the boundary which best represents the
extent of the road. SCARF uses a Hough method where
each pixel votes for all values of the road shape parameters
that are consistent with the location of the particular pixel.
The parameter set that receives the most votes is chosen as

the road model. VITS determines the road boundary by
finding edges between the road and non-road regions and
using a boundary tracing algorithm to follow the edges.
FMC locates a number of candidate boundaries between
the road and non-road and selects the boundary that best
satisfies a number of geometric constraints such as smooth-
ness, constant road width, and temporal continnity.

SCAREF has been used to navigate the Carnegie Mellon
University Navigation Laboratory (NAVLAB) along bicy-
¢le paths, dirt roads, gravel roads and suburban streets at
slow speeds. In particutar, SCARF has been successful in
locating roads that are obscured by heavy shadows, but it
encounters problems when the road is covered by leaves or
snow. When this happens, a road class and non-road class
become indistinguishable. Problems are also encountered
when there are large changes in illumination between suc-
cessive images. SCARF’s update rate is on the order of one
second per image depending on the hardware configuration
[1].

FMC reports achieving real-time road following on dirt,
gravel and paved roads at speeds up to 19 km/h using their
vehicle, a specially instrumented armored personnel carri-
er. They report that their system does not reliably classify
areas of road that are in shadow or that contain puddles or
patches [6].

VITS was able to successfully navigate the Antonomous
Land Vehicle (ALV) over a 4.2 km paved test track at
speeds of 10 km/h [4].

The strength of these methods is their generality. They
do not require lane markers to be painted on the road and
they do not require crisp or smooth road boundaries. A po-
tential weakness of this approach is that there is a cyclical
dependency between segmentation and the recomputation
of road statistics, If the segmentation is incorrect, the pixels
that were misclassified will contaminate class statistics. In-
accurate class statistics will then lead o poorer segmenta-
tion. Therefore, the system will probably not recover once
it misinterprets an image. This approach also requires con-
tinuity in road appearance between successive images. For
instance if the sun goes behind a cloud, the color statistics
computed from the image of the sunny road probably will
not produce a good segmentation on the image in which the
sun is hidden,

Additionally, these methods are computationally expen-
sive and therefore are slow. A slow image processing rate
limits the speed of driving.

2.1.2, Unsupervised classification

The techniques described in the last section are exam-
ples of supervised classification. In supervised classifica-
tion, the parameters of the classifier are pre-specified for
each new data set. In unsupervised classification, the pa-



rameters of the classifier are not pre-specified. Instead
categories are formed by grouping together similar data
into clusters or classes. A method called UNSCARF [31,
(81 uses this technigue for road recognition. It groups sets
of pixels into regions of similarity and then selects the set
of regions whose combined shape best forms a road. To
cluster pixels, a variation on the ISODATA clustering al-
gorithm [34] is used. In this method each pixel is first ar-
bitrarily assigned to a class, (The number of classes must
be predefined). The mean and covariance of these classes
are then computed. Each pixel is then reclassified to the
class for which its Mahalanobois distance is minimum.
The statistics of each class are then recomputed using the
new pixel assignments. This process is repeated until few
pixels change class membership.

UNSCAREF has been used to successfully navigate the
Carnegie Mellon University NAVLAB on unstructured,
paved and unpaved roads under various conditions.

2.2. Feature tracking methods

Another set of vision methods for autonomous driving
could be described as feature tracking [2], [9], {10), [11],
[12], [13], [14], [15], [17}, (18], [19], [20), [21], {22},
[23], [24], [25]. These methods locate the road on the ba-
sis of distinct features, usually the lane markings painted
on the road or the boundary between the road and its sur-
roundings. These methods exploit the temporal continu-
ity of the image sequence to locate the desired features,
i.e., the search for these features is highly constrained by
their location in the previous image. Feature tracking
methods also maintain a geometric model of the road that
is updated over time. The differences in these methods
lie in how the features are detected, how the road is mod-
eled, and how the road model is updated.

The VaMoRs system developed at Universitat der
Bundeswehr Munchen, [9], {101, [11], [12], [13], [14]
was one of the first systems to demonstrate autonomous
driving at high speeds. This method is based on locating
road boundaries and road lane markers. These features
are detected in the image using edge extraction. In the
neighborhood of predicted edge location, the image is
correlated with edge masks in a range of orientations
about the predicted edge orientation. These extracted
edges are then considered to belong to a lane marking or
boundary if they form line features with low curvature,
are parailel to other line features, and are almost parallel
to the viewing direction. In addition to vision, vehicle
motion is measured by inertia sensors.

Using the visual and vehicular measurements, the 3-D
geometry of the road is reconstructed and updated for
each new image. The complete model is comprised of 9

state variables. The road is modeled by 3 state variables
representing the horizontal (lateral) contour of the road
and 2 state variables representing the vertical (elevation)
contour of the road. These contours are approximations
to the clothoid model where curvature is modeled as a
linear function of arc length. This model also includes 4
state variables representing vehicle steering angle, lateral
offset from the center of the lane, heading angle, and slip
angle.

The temporal nature of this system is modeled using a
state transition equation expressing the evolution of this
9-dimensional state vector over time. A Kalman filter-
like approach is used to update the state. This approach
accounts for the state space equation and the relationship
between the measured quantities and the state. It is not a
true Kalman filter because in the state transition equa-
tion, the coefficients multiplying the state are functions
of the state itself, Because of this non-linearity, such a
technique is not optimal and may not be stable. The pa-
pers describing this system do not describe how the un-
certainty models required for the Kalman filter, the mea-
surement variance and signal covariance, are chosen.

The VaMoRs system has been able to achieve auton-

omous driving at speeds up to 100 km/h and continuous

driving as far as 20 km on the German Autobahn, (This
was actually demonstrated with an earlier version of their
system that did not account for vertical curvature [12],
{13].) They have also had success driving under various
lighting and weather conditions and on unmarked cross-
country roads.

The YARF system, [2], [15], [16], tracks the lane
markers and the shoulders. These features are detected
on this basis of known geometry, known color, and edg-
es. The road is modelled as a flat plane and all feature
points are used to find a 2nd order polynomial that best
describes the path of the road. Fit is computed using both
least squares and least median squares. The least median
squares approach gives superior performance in the pres-
ence of outliers, but is too computationally demanding
for real-time implementation. In the least squares ap-
proach, the data is rotated such that the residual is ap-
proximately normal to the polynomial. Y ARF has been
used to autonomously drive the Carnegie Mellon Univer-
sity NAVLAB at speeds up to 25 km/h on public roads
that included high curvature lanes and shadowing from
surrounding trees.

The University of Maryland system [17}, [18], {19],
[20] is based on identifying the road boundary using
edge detection. This method begins searching for the
road boundary in a small window at the bottom of the im-
age. The search window is chosen based on the location



of the road in the previous image. Based on the location of
the road in the window, other windows are placed above
this window. The new window is then used to search for
road boundaries. This process continues moving from the
bottom to the top of the image. The system has achieved
autonomous road following over a distance of several hun-
dred meters at a speed of 3 km/h using the Martin Marietta
Autonomous Land Vehicle (ALV). The system does not
work well in the presence of patchy roads, shadows, and
water on the road.

The Toyota system [23] uses edge extraction to locate
lane markings. This system has been able to achieve auton-
omous driving at speeds up to 50 km/h. Successful driving
has been achieved on both sunny and cloudy days, and in
the presence of shadows, The system is less reliable under
more severe lighting and weather conditions including sun-
rise, sunset, and heavy rain.

The University of Bristol system [21] is based on locat-
ing edge points of the road boundary. The edge points are
fit 10 a 2nd order polynomial. All points that are 3o away
from the polynomial are discarded and the least squares
computation is repeated. The process of computing points
and discarding outliers is repeated until the variance in the
estimate stops decreasing. This method has been used 10
autonomously drive a small electric vehicle on paths on the
university grounds.

Other researchers have worked with feature tracking ap-
proaches for driving in simulation. These include [22],
[25]).

The advantage of the feature tracking algorithms is that
they require less computation and are therefore able to
achieve image processing update rates capable of support-
ing high speed driving. The disadvantage is that they re-
quire specific features of the road infrastructure to be
present such as clearly visible lane markers. When these
features are less prominent due to wear, or obscured be-
cause of weather or lighting, these techniques become un-
reliable.

2.3. Other approaches

A neural network-based approach ALVINN [29], [30]
has been used for autonomous driving. The input (o the net-
work is a reduced resolution (30 X 32 pixels) processed im-
age. The network generates a steering angle as an output.It
is rained by using backpropagation while a human is driv-
ing. To obtain a training sequence that includes a large va-
riety of driving situations, several techniques are used.
ALVINN also includes a training technique whereby struc-
tured noise is added to image regions where the network
may draw an incorrect correlation. For example, in a short
training sequence, the network may draw an undesirable
correlation between the amount of grass in view and the ap-

propriate steering angle, Without the addition of structured
noise, the network may fail when the grass becomes ob-
scured by a guardrail. ALVINN has successfully driven the
Camegie Mellon University NAVLAB for a continuous
run of 34 km at speeds of up to 90 km/h. ALVINN has been
successfully trained for highways, unmarked rural roads,
and cross-country roads.

Other approaches proposed for road perception include
image flow [28], morphological image processing [26],
and combined region and boundary extraction [27].

3. Lane marker tracking algorithm

This paper describes a feature tracking approach o au-
tonomous driving developed at NIST. The approach differs
from the previous approaches in the methods used for up-
dating the road model and in the road model representation.

The method used for updating the road model differs
from others in the manner in which data is combined tem-
porally. In the recursive estimation formulation for updat-
ing the model (see section 3.6}, each image carries a weight
based on the confidence in that image data. Under this for-
mulation, an image in which the lane markers are clearly
visible will carry more weight than an image in which lane
markers are less visible. This produces graceful behavior
when lane markers are momentarily absent or obscured.
Other feature trackers do not consider image data confi-
dence when combining image data temporally.

In this method, we represent the road by a 2D model in
the image plane as opposed to a full 3D model. With this
representation, the model is directly estimated from the im-
age without any intervening geometric transformations.
Other approaches transform the detected features from 2D
to 3D and update a 3D road model. The 3D road model is
then backprojected into 2D and used to search for features
in the next image. The problem with this approach is that
these transformations are never exact. They produce errors
because they depend on camera calibration and approxima-
tions (the small angle approximation, the flat road assump-
tion, linearization of a non-linear models). By representing
the model in 2D, these sources of error are avoided.

The 2D representation also simplifies the geometric
road model update computation. This representation allows
both spatial and temporal information to be combined in
one simple recursive estimation formulation instead of sep-
arate estimates of spatial and temporal model parameters.

3.1. Overview

The road following algorithm involves three successive

-



stages of computation:

1) Edge extraction - Extracting edge point position and
orientation.

2) Data association - Determining which edges most
likely correspond with each lane marker.

3) Model update - Updating the lane marker models.
This sequence of operations is repeated for each new im-
age. Video imagery from a camera mounted above the cab
of the vehicle provides the input to Stage (1) (Figure 1).
Stages (2} and (3) interact with a geometric model of the
road. Stage (2) attempts to associate the extracted edge
points obtained from stage (1) with the models. Stage (3)
updates the medels using the edge points associated to each
lane marker.

In this section, the road feature tracking algorithm is de-
scribed in detail. Section 3.2 describes the geometric repre-
sentation of the lane markers. Section 3.3 describes how the
model is initialized to a road scene. Section 3.4 describes
the edge extraction algorithm. Section 3.5 describes the
data association algorithm. Section 3.6 describes the meth-
od for updating the lane marker models.

3.2. Lane marker models

Both the left and right lane markings in the lane of travel
are modeled. These markings correspond o the white or
yellow lines painted on the road. These lines are either solid
or striped (Figure 2).

Each of these lanc boundaries is modeled by a second
order polynomial in the image plane:

X = a1+a2y+a3yz (l)

The parameters, a,, a3, a3, govern the shape and position of
the lane marker model. The endpoints of each lane marker
model are given by the intersection of the model equation
with the boundary of the window of interest (see section
3.4).

— 2
x = apy + ay 5y + ap 2y

Figure 2. Lane marker models

3.3. Initial conditions

The algorithm requires an initially approximate model
of the lane markers before tracking can begin. This initial
model is established by a teleoperator who manually posi-
tions the models to align them with the appearance of the
lane markers in the image. On the visual display, the lane
marker models are represented to the teleoperator as graph-
ic overlays on the live video image. In this way, the teleop-
erator establishes the initial values of the parameters a,, a,,
aq in equation (1) for both lane marker models.

3.4. Edge extraction

In the first processing step, edge extraction is performed
on the input scene (stage (1) in Figure I1). For every point
in the image, edge magnitude and edge orientation are
computed using a two-dimensional 3 X 3 spatial gradient
operator. The direction, 8, of each point in the image is de-
fined to be perpendicular to the direction of the gradient of
the intensity function ffx,y) at that point:

fo (1', y) n

0= amn_Vj;(x, y) +§ (2)

The magnitude of each edge pixel, mag, is given by:

Edge location and Matched
Stage (1) orientation| Stage (2) edges Stage (3)
Ca:,n;ri: or™\ Images Extracf all edges in | g|Determine which edges most like- — Update
mage ly correspond to lane markers models

~__X
(s )

Figure 1. Processing overview
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Using a non-maximum suppression algorithm, those edge
pixels whose magnitude is greatest in the direction across
the edge are sclected as edge points. A description of the
non-maximum suppression edge extraction algorithm can
be found in [33]. A binary edge image is produced by
threshoiding the edge points. The threshold level is set to a
value which removes weaker edges. A threshold value of 8
in a grey level range of 0 to 255 proved to be effective. The
output from this processing stage consists of a list of the
image coordinates of all edge points above the threshold
value and the orientation of these points. It should be noted,
at this stage of operation, no effort is made to distinguish
lane marker edges from other edges present in the input im-
age.

To reduce the amount of data processed by the data as-
sociation algorithm (stage (2) in Figure 1), all edges that
fall outside a window of interest are excluded. This win-
dow of interest is chosen to include the entire portion of the
visible road but to exclude, as much as possible, the rest of
the image (e.g. the hood of the vehicle, trees, grassy shoul-
ders, houses, eic.). Figure 3a is a typical image of a road
viewed from a camera mounted on a vehicle. Figure 3bis a
window of interest. Figure 3¢ represents the results of
masking the original road scene with the window of inter-
est. During execution, the lateral position of the window of
interest shifts in order to keep it centered on the road. In ad-
dition 1o centering, the shape of the window of interest
changes as a function of the current road curvature, Cur-
rently, seven masks are used: one mask representing zero
road curvature (Figure 3b), three masks representing in-
creasing road curvature to the left, and three masks repre-
senting increasing road curvature to the right. All masks are
generated off-line but are instantiated in real-time during
actual image processing. The mask selection algorithm
changes masks when one of the lane marker models inter-
sects either of the vertical boundaries of the current mask.
For example, if a lane marker intersects the left boundary,

the mask giving the next larger increment of curvature to
the Ieft is chosen.

Prior to processing, the image is enhanced by a yellow
filter in front of the camera lens. The filter is designed for
spectral transmission of wavelengths from 510 nanometers
(nm) into the infrared. The effect is to intensify the contrast
of the yellow and white markers against the road.

3.5. Data association

The raw edges in each image are produced by various
visual entities including lane markers, shadows, pot holes,
cracks, and other vehicles. A data association algorithm is
used to determine which of these raw edges are likely to be
associated with each lane marker and to discard those edges
that do not scem to be associated with either lane marker.

The data algorithm compares each edge pixel to the
model of each lane marker. An edge pixel must satisfy two
criteria to be associated with a lane marker. The first crite-
rion is two-dimensional spatial proximity of the edge point
10 the model. The second criterion is similarity of direction
of the edge point with the angular orientation of the model.
Using these criteria, it is possible but unlikely for an edge
point to be associated to both lane markers.

To facilitate this process, the polynomials representing
each lane marker are each approximated by a set of consec-
utive line segments. This is achieved using a simplified
version of the iterative endpoints algorithm [34). The con-
glomerate of these lines is used as the model in the data as-
sociation procedure.,

The first step in this data association procedure com-
pares the edge direction of the candidate edge point with
the angular direction of each of these model lines:

18 0det ~ Oaual <9 4
For each model line for which the angular criteria is satis-
fied, the distance d is computed between the point at image
coordinate (x;, y;} and the model line:

Figure 3a. Road scene

Figure 3b. Window of interest

Figure 3¢. Window of Interest
applied to road scene
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Where (Ayx + Byy + Cy = 0) is the equation for the k™ line in the mod-
el.

If the minimum of these distances is less than a distance
threshold, {, the edge is assaciated with that lane marker.

3.6. Lane marker model update

Each of the two polynomial lane marker models is up-
dated independently (except for the case described in
3.6.3). The parameters of each model a;, ay, a3 in equation
(1), are updated by an exponentially weighted recursive
least squares computation (see [35]) using the edge points
that have been associated to that lane marker,

It should be emphasized that in this estimation method,
the estimated model parameters are based not just on the
current image, but on data acquired over the entire se-
quence of previous images. The edge data from any one im-
age alone may not be sufficient to obtain an accurate model
of the lane markers. This data may be contaminated by
noise or incorrect data associations, or the edges due to ac-
tual lane markers may be too weak to be detected. In any
case, the estimate of a lane marker model can be improved
by using data over a sequence of images. It can be shown
by probabilistic arguments that if a measurement consists
of a sum of a stationary signal and randomly distributed
zero mean noise, the estimate of the signal will improve
(i.e. the variance in the estimate will decrease) as more
measurements are averaged [31], [32].

For feature detection in a static scene, the assumption of
randomly distributed noise is somewhat problematic, Since
the feature and its surroundings are in a fixed spatial rela-
tionship, any source of noise in the surroundings (e.g. a
shadow) will bias the estimate regardless of how many im-
ages are used. However, for road following, this assump-
tion of random noise holds to a much greater degree. In
road following, the immediate surroundings of the lane
markers (as viewed in the image) are constantly changing
because of the motion of the vehicle. Since the immediate
surroundings are different for each image, a better approx-
imation to random noise, symmetrically distributed about
the signal, will be achieved by using more images. Noise
caused by shadows and cracks in the road also tends to be
randomly distributed. However, there are exceptions such
as skid marks, mud tracks, and shadows of power lines.

The success of exponentially weighted recursive least

squares also is based on the assumption that the appearance
of the road changes gradually over a sequence of images
(the stationary signal assumption). There are, however,
limits at which the assumption of continuity fails. There-
fore, a compromise must be achieved between robustness
and responsiveness by the relative weighting of new data
with respect to older data. If new data is weighted relatively
heavily, the algorithm will be very responsive to changes in
the road. The algorithm will also be more susceptible to the
ill-effects of outliers and sparse data. On the other hand, if
new data is weighted less heavily, the algorithm will be
more robust in the presence of outliers, but more inert in re-
sponding to actual changes in the image of the road.

In exponentially weighted recursive least squares, the
temporal weighting of data is controlled by specifying the
value of the exponential weighting factor, A (also called the
Jorgetting factor). The weight assigned to data from each
image is:

A (©)

00<h<if
n is the current time
m s the time the image was sampled

For example, if A =05, all edge points in the current image,
m=n, have a weight of 1.0. All edge points in the image
read at time m = n - I have a weight of 0.5; edge points
from time m = n - 2 have a weight of 0.25, etc. Valuesof A
anywhere in the range 0.5 < A < 0.75 produced acceptable
tracking.
3.6.1. Formulation of the least square problem

The model parameters are determined such that a least
squares residual is minimized. To illustrate this for a simple
case involving one data set, the values of g, a,, a3 in equa-
tion (1) are determined such that Jg minimized:

N
2
Jg = Y [x- (a;+ayy;+ayy))] )
i=1
N - Number of data points (x;, ¥;}.
Graphically this corresponds to minimizing the sum of the

squared horizontal distances between the model and the
data points (Figure 4):

Figure 4. Least squares residual in x



The reason for minimizing the least squares residual in the
x coordinate as opposed to the y coordinate is that the lane
markers when viewed from an automobile centered on the
road, are more nearly perpendicular to the x axis than the y
axis.

In the formulation of the road model update problem,
the data set includes the edge data from the entire previous
image sequence and grows as new images are acquired. As
new data is acquired, the older images are weighted by in-
creasing powers of the exponential weighting factor {equa-
tion (6)) thereby giving them increasingly less weight.
Therefore, after each is image is acquired, a;, a,, a3, must
be recomputed such thatJp is minimized:
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Jj - Time at which image was sampled
N; - Number of matched edges points in image j

Each summation represents the data from one image. In ad-
dition to exponential weighting, the weight of each image j
is also implicitly a function of the number of edge points,
N;, used from the j image. An image in which many edge
points are associated to the lane marker will carry more
weight than an image with few associated edge points.
Therefore, if a lane marker momentarily disappears, few
edge points will be associated to the model and the estimate
will not be greatly perturbed. Also, since the variance of a
least squares estimate decreases as the number of data
points increases (see [31], [32]) more weight is given to an
image in which there is a higher confidence.

3.6.2. Solution of the least squares problem by a recur-
sive method

To efficiently solve equation (8) for a;, a;, a3 such that
the residual, Jp, is minimized, a modification of the square
root information filter (SRIF) algorithm [36] is used. The
SRIF provides an efficient, numerically stable, closed form
solution 10 the least squares problem. It is also a recursive
algerithm, i.e. the model is updated as new data becomes
available without having to explicitly store older data. The
algorithm also has the advantage that it is “recursive in
batches” i.e. it can efficiently combine groups of measure-

ments at once. Such a computational arrangement is useful
for the road tracking problem and computer vision prob-
lems, in general, since each image yields a baich of data
points.

The SRIF is based on solving the recursive least squares
problem using the square root method [36), [37]. This
square root technique is first illustrated for the ordinary
least squares problem of determining aj, a, a3, such that
Jp is minimized for one data set (¢quation (7)). Rewriting
equation (7) in matrix-vector form gives:

Jp = (b-A0)T(b-Ax) = 16-4x)? ©)
Where

X 1y ¥
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Where A is Nx3, N>3, rank = 3,

The Euclidean norm, Jg, of the vector (b - Ax} will not
change if the vector is multiplied by an orthogonal matrix
T, where T is size NxN. Therefore, x can be equivalently de-
termined by minimizing:

Jp = I TAx-Tblt? (10)
An orthogonal matrix T is chosen such that the matrix prod-
uct TA is equal to R, where R is partitioned into a 3x3 upper
triangular matrix, I/, and a (N-3)x3 null matrix consisting
of the remaining rows:

TA=R = [ﬂ (11)

To find such a T, the QR factorization of A can be comput-
ed:

A=QR = Q[ﬂ (12)

Where () is orthogonal and R are the same as above,

Multiplying both sides of the equation by the transpose of
Q gives:

_p-|U
QTA=R= [0] a3)

Therefore, comparing equations (11) and (13), T is given
by the transpose of @, computed from the QR factorization
of A,

The QR factorization exists for any full rank matrix, A.



A number of methods exist for computing this factorization
including Gram-Schmitt, Modified Gram-Schmitt, Fast
Givens Rotations, Householder Reflections, and the QR al-
gorithm [36], [37], [38], [39]. The Houscholder method
was used for the purposes of this problem. It offers a com-
bination of simplicity, numerical stability and computa-

tional efficiency.
Once T is found, the residual can be rewritten;
Jg = (Thb=-TAx)T(Tb-TAx) = (14)
T
} a6
zZ, 0 2, 0
Jg = lz,-Ux] r [z, -Ux} + zgzz (15)

Where the product Tb is partitioned into a vector z; consisting of the first
3 rows and the vector z, consisting of the remaining N-3 rows:

%

Since only the first term in equation (15) is a function of
x, only this term has to be minimized. This term is non-neg-
ative and x can be determined such that it is equal to zero,
or equivalently:

z, = Ux (16)

This is an exact set of linear equations (3 equations and 3
unknowns) that can be solved uniquely. Moreover, back-
substitution {see [391, [40]) can be used to solve for x since
U is an upper triangular matrix. This x then gives the solu-
tion to the ordinary least squares problem of minimizing
equation (7).

It should be noted that this square root method is one of
many methods that can be used to solve the ordinary least
squares problem. Most readers are probably more familiar
with the process of forming and solving the normal equa-
tions:

ATh = ATAx an

However, as mentioned earlier, the square root method is
chosen because it allows the recursive processing of batch-
es. It also has better accuracy and numerical stability under
finite precision arithmetic than normal equations methods
since it does not involve forming the squares in equation
(17).

The square root information filter (SRIF) extends the
square root method to recursively solve the least squares
problem given by equation (8). Assume that the least
squares pair given by z; and U in equation (16} exists for

data from the previous sequence of images. To update this
solution to account for data from a new image, such as A
and b given by equation (9), a matrix vector pair is con-
structed by appending U and z; with additional rows corre-
sponding to a new set of data (4, b), respectively:

y = H M= H (18)
b A
This gives a composite data set combining the data from
the entire previous image sequence (z;, U) with the new
data (A, b). Combining data in this fashion may appear non-
intuitive, since (A, b) represent raw data and (U,z; ) do not
directly represent raw data. However, (U,z; ) were obtained
by multiplying raw data by a series of orthogonal matrices.
(y, M) can then be thought of as the product of raw data
with an orthogonal matrix, where the block component
multiplying A is an identity matrix. From equation (10), we
know that the least squares problem is unaltered if the data
is multiplied by an orthogonal transformation.
Using the square root method, x is then solved such the
least squares residual, J, is minimized:.

7= (=-M0)T(y-Mx) = lly-Mxl 19)

This will give the new updated solution for x. The new val-
ues of z; and U that are generated by this process are then
used to form another new pair y and M, equation (18), when
the next image is acquired. This whole process is called the
square root information filter, This name reflects the fact
that the algorithm involves updating U, which is propor-
tional to a square-root of x’s information matrix when the
errors (y - Mx) are independent and identically distributed.
The informatton matrix is defined as the inverse of the co-
variance matrix, X, of the state, x; that is, if x is thought of
as a random vector, then:

E((x-% (x-0D =2 = W™ (20)

To modify this algorithm to include exponential weight-
ing, y and M are t0 be constructed by the alternate forms, in
place of equation (18}:

-
b

where A is the exponential weighting factor defined in equation (6).

3.6.3. Road width constraint

Lane markers are physically constrained by constant
road width in the ground plane. This translates to a fixed
separation in the image plane if elevation changes as a lin-
ear function of distance along the roagd.

If sufficient data is matched to both lane markers, the

M- [U.ﬁ:[ @1
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two lane markers are treated independently. However, a
road width constraint is used when the lane marker data is
sparse for one lane marker and strong for the other lane
marker. This constraint is designed to handle the situation
where one lane marker momentarily disappears. Currently
a road width constraint is applied when the number of edge
points associated to the weaker lane marker is under a pre-
defined threshold and the stronger lane marker exceeds the
threshold. The threshold is currently set to 40 points.

Road width is modeled as a second order polynomial in
the image plane:

*w = "1\4;*'“21«»’”'13w3’2 (22)
Each coefficient of this polynomial is computed from the
difference of the corresponding coefficients of the two lane
marker models. This difference is then averaged over time
with exponential decay. For example, for the first coeffi-
cient this gives:

e )] _alL(j) "'Nalw(j" 1)

alw(j) = 1+N (23)

J - Time at which image was sampled

N - Decay factor, currently N=20
These coefficients are recomputed for each new image.

The road width constraint involves using the road width
model to compute a lane marker model by adding this off-
set to the location of the other lane marker model. The com-
puted lane marker model is then weighted and combined
with the edge data usually used for computing the lane
marker model update. The weight this computed lane
marker carries is a function of the number of edge points
associated to lane marker versus the number of points asso-
ciated to the other lane marker.

4. Hardware and developmental testbed

To run actual autonomous driving experiments requires
a complete autonomous navigation system which includes
a perception system, a steering/control system, and a robot-
ic vehicle. Such a system has been developed at the Nation-
al Instimte of Standards and Technology (NIST) using an
Army High Mobility Multipurpose Wheeled Vehicle (HM-
MWY). The HMMWYV and steering/control system are de-
scribed in [47] and [48].

The development environment for the vision system
consists of a Sun SPARCstation 2, a Pipelined Image Pro-
cessing Engine (PIPE), 2 VME-based multiprocessor sys-
tem. Figure 5 shows the allocation of processing across
hardware. In this figure, the large gray rectangles represent
distinct software modules. Each of these modules is la-

belled by its functionality (SP = sensory processing, WM =
world modeling) and level within the NASA/NBS Stan-
dard Reference Model for Telerobot Control System Ar-
chitecture (NASREM) [41]). The system described in this
paper is contained in a larger, multi-purpose implementa-
tion of NASREM, [42], [43], [44], [45). Also, a complete
control system architecture proposed for intelligent vehi-
cles is found in [46).

A CCD video camera is mounted above the cab of the
HMMWYV. This gives a view of the road similar io that of
a driver but from a higher perspective.

The video input is read into PIPE. The incoming images
are digitized to provide 8-bit grayscale images that are
242x256 pixels in size. Edge extraction is performed on the
images. The Iconic-to-Symbolic Mapper (ISMAP) stage of
PIPE [50] then converts information from an image format
to a symbolic list and is used to store the binary edge image
as a list of pixel positions. In addition, the corresponding
edge direction values are stored in the ISMAP iconic buffer
where they are mapped onto the memory of one of the mi-
croprocessors via a specialized PIPE-VME interface board.
The edge extraction and symbolic mapping operations are
pipelined. They are indicated by black parallelograms in
Figure 5.

The remaining processing is divided among micropro-
cessors in the VME backplane. Most computations -- com-
munication with the PIPE, data association, updating the
model, and steering -- are pipelined. The model updates for
each lane marker are computed in parallel on separate pro-
cessors. All inter-processor communication is done
through semaphored global memory. For a detailed de-
scription of our software engineering practices refer to
[49].

The steering process computes a steering angle that will
guide the vehicle down the center of the lane of travel. The
steering algorithm used to guide the vehicle is called pure
pursuit and is described in [48].

The display process provides a graphic overlay of the
window of interest, the geometric models of the lane
boundaries and the computed lane center on the live video
image. The graphic overlay is used for debugging purposes
and to provide a qualitative measure of performance. A
Matrox VIP 1024 frame grabber (not shown in Figure 5) is
used to implement the graphic overlay on the video signal.

The logging process simply logs data during operation
that can be later analyzed off-line.

All program development for the VME-based multipro-
cessor system is done on a Sun SPARCstation 2. All code
on this system is written in the Ada programming language.
Program development for PIPE is done on a personal com-
puter using the PIPE graphical programming language,
ASPIPE [50].
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5. System evaluation

This algorithm has been tested and used 1o drive the
HMMWY under closed loop control on several roads.

The algorithm has been successfully and reliably used to
guide the vehicle under full closed loop control on roads on
the NIST campus. This included testing during rain with
wet roads, nighttime driving with headlights, and driving at
dusk into the sunlight. Top speeds of 80 km/h were demon-
strated. The lane markings consisted of a standard solid
double yellow line down the middle of the road and a solid
white line separating the road from the shoulder.

On a four lane road, Great Seneca Highway in Gaithers-
burg, Maryland, the algorithm has been used to successful-
ly control the vehicle at top speeds of 80 km/h. The algo-
rithm has guided the vehicle on both lanes of travel. The
lanes of travel are separated by a dashed line. In both lanes
there is a solid white line separating the lane from the
shoulder. Autonomous driving was maintained over sever-
al kilometers (intersections limited the length of these
stretches) that included mederate curves and shadows from
trees. Autonomous driving sometimes failed on one portion
of road where the pavement abruptly changed from dark as-
phalt to light cement for an overpass. The lane markings
did not provide enough contrast to be detected on the ce-
ment pavement. However, driving was maintained through
several significant gaps (6 - 7 meters) in the lane marking
for small intersections and under an overpass.

The algorithm has also been used to autonomously drive
the vehicle around the Montgomery County Police Test
Track. The test track is approximately 4 kilometers long
and is marked by a double yellow line down the middle and
a solid white line separating the lanes from the shoulder,
The track is designed for police training and contains many
challenges to the driver such as sharp curves, poor banking
on curves, poor visibility, and small steep hills. Also, the
pavement is rather old and exhibits many cracks and discol-
orations.

The algorithm has also been tested using video taped
road scenes recorded from the camera mounted on the ve-
hicle. This provided a method for performing tests without
the vehicle, thereby allowing safe testing of the vision al-
gorithm, Tracking was maintained on video tapes of roads
with sharp curves, hills and moderate shadows. However,
on one portion of video taped road, tracking was temporari-
ly lost when the vehicle travelled through a sharply curved
hilly portion of road that was shadowed by a heavily wood-
ed area, Tracking was maintained in typical traffic situa-
tions: on-coming traffic, passing vehicles, and while trav-
eling behind other vehicles.

5.1. Timing

The update rate of the system is 15 Hz and the worst
case computational delay (between image capture and
computation of steering) is 150 milliseconds (ms). Edge
extraction required 66.7 ms. The number of edge points ex-
tracted varies from scene to scene and the processing times
for the algorithms in stages (2) and (3) (Figure 1) will vary
depending on the number of data points present. For a rep-
resentative road scene containing approximately 300 edge
points, the edge matching is performed in 21 ms and the
road model update is performed in 51 ms. The steering pro-
cess requires less than 1 ms computation time.

6. Conclusion and future work

An algorithm has been described that robustly tracks
road lane markers, It is assumed that the lane markers are
visible with either solid, double, or dashed lines. All visual
processing is done in two dimensional image coordinates.
Processing is performed in sequential stages: extracting
edges, associating edge points to the lane markers, and up-
dating models of the lane markers. An exponentially
weighted recursive least squares computation used to up-
date the road model operates in both a spatial and temporal
domain. The system update rate is 15 Hz.

Although this system performed very well under limited
testing, its limitations under severe conditions were evi-
dent. The challenge in future work is to develop algorithms
of increasing reliability and to strive toward the goal of ro-
bustness under all possible road conditions. This will in-
volve making use of other visual cues for redundancy, such
as road color, road texture, and range.
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